Minimizing Algebraic Error in Geometric Estimation Problems

نویسنده

  • Richard I. Hartley
چکیده

This paper gives a widely applicable technique for solving many of the parameter estimation problems encountered in geometric computer vision. A commonly used approach is to minimize an algebraic error function instead of a possibly preferable geometric error function. It is claimed in this paper that minimizing algebraic error will usually give excellent results, and in fact the main problem with most algorithms minimizing algebraic distance is that they do not take account of mathematical constraints that should be imposed on the quantity being estimated. This paper gives an efficient method of minimizing algebraic distance while taking account of the constraints. This provides new algorithms for the problems of resectioning a pinhole camera, computing the fundamental matrix, and computing the tri-focal tensor. Evaluation results are given for the resectioning and tri-focal tensor estimation algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimizing Algebraic Error

This paper gives a widely applicable technique for solving many of the parameter estimation problems encountered in geometric computer vision. A commonly used approach in such parameter minimization is to minimize an algebraic error function instead of a possibly preferable geometric error function. It is claimed in this paper, however, that minimizing algebraic error will usually give excellen...

متن کامل

Geometric Robust Watermarking through Mesh Model Based Correction

While geometric attacks are one of the most challenging problems in watermarking, random bending is the most difficult to handle among all geometric attacks. Such attacks are difficult to correct by traditional parameter estimation or registration approaches. In this paper, we present a watermarking scheme based on a deformable mesh model to combat such attacks. The distortion is corrected usin...

متن کامل

ALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS

Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...

متن کامل

Geometric Interpretation and Precision Analysis of Algebraic Ellipse Fitting Using Least Squares Method

This paper presents a new approach for precision estimation for algebraic ellipse fitting based on combined least squares method. Our approach is based on coordinate description of the ellipse geometry to determine the error distances of the fitting method. Since it is an effective fitting algorithm the well-known Direct Ellipse Fitting method was selected as an algebraic method for precision e...

متن کامل

Conic Fitting Using the Geometric Distance

We consider the problem of fitting a conic to a set of 2D points. It is commonly agreed that minimizing geometrical error, i.e. the sum of squared distances between the points and the conic, is better than using an algebraic error measure. However, most existing methods rely on algebraic error measures. This is usually motivated by the fact that pointto-conic distances are difficult to compute ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998